Crosstalk between neuropeptides SP and CGRP in regulation of BMP2-induced bone differentiation.

Aim Of The Study

The peripheral nervous system is involved in regulation of bone metabolism via sensory and sympathetic innervation. Substance P (SP) and calcitonin gene-related peptide (CGRP) are two sensory neuropeptides that have been associated with regulation of osteogenic differentiation. However, the interaction between SP and CGRP both with each other and the bone morphogenetic protein 2 (BMP2) in regulation of osteogenic differentiation has not been studied. Therefore, the aim of this study was to investigate the interaction between SP and CGRP on BMP2-induced bone differentiation using model progenitor cells.

Materials And Methods

C2C12 myoblasts and MC3T3 pre-osteoblasts were treated with SP and CGRP, both individually and in combination, in the presence of BMP2. The effects of the neuropeptides on BMP2-induced osteogenic differentiation were assessed by measuring alkaline phosphatase (ALP) activity, mineralization, and expression of osteogenic markers.

Results

Both SP and CGRP enhanced BMP2 signaling, Runx2 mRNA expression, as well as mineralization in vitro. Co-stimulation with SP and CGRP resulted in down-regulation of BMP2-induced bone differentiation, suggesting potential crosstalk between the two neuropeptides in regulation of BMP2 signaling.

Conclusions

Based on the results shown here, CGRP can mitigate augmenting effects of SP on BMP2 signaling and the three pathways potentially converge on Runx2 to regulate BMP2-induced bone differentiation.